Making News

Memory immune cells that screen intruders as they enter lymph nodes

Scientists have discovered a new population of ‘memory’ immune cells, throwing light on what the body does when it sees a microbe for the second time. This insight, and others like it, will enable the development of more targeted and effective vaccines. Two of the key players in our immune systems are white blood cells known as ‘T cells’ and ‘B cells’. B cells make antibodies, and T cells either help B cells make antibodies, or else kill invading microbes. B cells and killer T cells are known to leave behind ‘memory’ cells to patrol the body, after they have subdued an infection. The newly identified ‘Follicular Memory T cells’ are related to the T helper cells. However, unlike circulating memory B and T cells, they position themselves near the entrance of lymph nodes, particularly those that are potential sites of microbe re-entry.

The switch that might tame the most aggressive of breast cancers

Researchers have found that so-called ‘triple-negative breast cancers’ are two distinct diseases that likely originate from different cell types. The aggressive form of triple-negative breast cancer appears to arise from stem cells, while the more benign form appears to arise from specialised cells. This helps explain why survival prospects for women with the diagnosis tend to be either very good or very bad. The Garvan team has found a gene that drives the aggressive disease, and hopes to find a way to ‘switch it off’.

An enzyme that enables the pathway to diabetes

Garvan scientists believe they have identified an enzyme, known as ‘NIK kinase’ that undermines the delicately balanced whole-body system that keeps blood sugar levels stable and low in healthy people. The disruption of this system can lead to diabetes. NIK kinase undermines this system by causing dysfunction in the three major diabetes players: the pancreas, the liver and muscle. NIK kinase activates a signaling pathway that affects many genes, switching some on and others off. The next step is to prove that NIK is a drug worthy target. Garvan is working with a California-based biotech company to do that, and hope to have results by the end of this year.
Garvan welcomes Professor Mark Febbraio

Garvan is very pleased to announce that Professor Mark Febbraio has joined us as Head of the Diabetes and Metabolism Division.

Previously, Professor Mark Febbraio ran a laboratory in Cellular and Molecular Metabolism at Melbourne’s Baker IDI Heart and Diabetes Institute, and will continue his research at Garvan.

For the last decade, Professor Febbraio has been examining cellular and molecular mechanisms underlying obesity-induced insulin resistance, a precursor of diabetes. He has identified several promising target molecules and aims to develop new drugs to treat diabetes.

You can read more about Professor Febbraio, and his work on page 6.

Recipient of the inaugural Connie Johnson Fellowship in Breast Cancer announced

The recipient of the inaugural Connie Johnson Fellowship in Breast Cancer at the Garvan Institute was announced recently at Parliament House, Canberra.

The Fellowship, funded by the hugely successful Love Your Sister campaign, will support Dr Elgene Lim. Dr Lim is an outstanding breast cancer researcher who will take up the position as Principle Research Fellow of Garvan’s Genomic Cancer Medicine Laboratory.

According to Connie, the development of the Connie Johnson Fellowship in Breast Cancer Research is an important step in achieving Love Your Sister’s goal – ensuring no other young mum has to lose her life to breast cancer.

“We are incredibly proud of what we’ve achieved since Connie put on her unicycle two years ago, and we are hugely grateful to the supporters who have helped us raise more than $20 million for Garvan’s cancer research,” said Connie.

Dr Lim will take up his position at Garvan in the coming weeks.

Professor Clark elected Fellow of the Australian Academy of Science

Congratulations to Professor Susan Clark, Head of the Genomics and Epigenetics Division, who was elected Fellow of the Australian Academy of Science in recognition of her outstanding contributions to science and scientific research.

Professor Clark is one of 21 new Fellows, 9 women and 12 men, to be elected in 2015 from around Australia and across all the natural sciences. The Academy now numbers a total of 503 Fellows.

Academy President Professor Andrew Holmes said, “Election to the Academy honours the remarkability of individuals who are leaders in various fields of science.”

Dr Elgene Lim and Connie Johnson

Use your Smartphone to help fast track our cancer research

Vodafone Foundation has launched DreamLab, a world first Smartphone app that allows Australians to use the power of their mobile phone to help speed up Garvan’s cancer research.

When your Smartphone is fully charged, it will process a tiny research problem and send the result back to the cancer research team at Garvan. It’s like working on a giant crossword with everyone solving a different clue.

Huge advances in DNA sequencing technology have enabled rapid and affordable sequencing of cancer genomes, creating a virtual tsunami of genetic information.

However, progress is limited by the huge computing power and associated expense required to analyse this information.

“There are many research questions that we want to ask, but some are just too computationally expensive, so we’d never dream of being able to ask them, or it would take us years and years,” said Dr Warren Kaplan, Chief of Informatics at Garvan.

DreamLab will provide the computing power needed to run simulations to analyse and group cancers based on their genetic profile (rather than the cancer’s tissue of origin). These new profiles will help researchers understand how different patients respond differently to various drugs, help predict which patients will benefit, and help find completely new strategies for treating cancer.

DreamLab is an online app so it needs data to work, but it’s small and you can set your monthly contribution limit and choose whether to give on your mobile network, or on WiFi. If you’re with Vodafone, the data you contribute on the Vodafone network will be free.

“Our three-year partnership with Garvan is part of our commitment to helping charities harness the power of mobile technology to improve the health of Australians,” said Alyssa Jones, Head of Vodafone Foundation.

“We hope Garvan’s already generous supporters will consider this a fun and easy way to provide additional support for medical research.”

Download the DreamLab app now from the App Store or Google Play. For more information visit vodafone.com.au/dreamlab

More than 20-years of invaluable support

Garvan is honoured to have the ongoing support of The Roth Charitable Foundation. Established in 1999 by Henry and Ann Roth, the Foundation honours the memory of Henry’s father, sister and brother and the other six million Jews who were murdered in the Holocaust.

Garvan’s relationship with the Roth Charitable Foundation began in 1994, when Henry’s sons, John and Stanley, expanded the Foundation. At this time, they began supporting Garvan’s breakthrough medical research with a particular interest in dementia and Parkinson’s disease.

In 2014, the Roth Charitable Foundation became a Garvan ‘Life Governor’ and renewed its support in 2015 with the establishment of the Roth Foundation Fellowship for Dr Bryce Vissel, Dr Bryce Vissel, head of Garvan’s Neurogenetic Disease Laboratory is proud to be the Roth Foundation Fellow.

Dr Vissel and his team are focused on understanding disease mechanisms and discovering new potential therapies for the treatment of Alzheimer’s disease, Parkinson’s disease and spinal disorders. The Roth Charitable Foundation’s long-standing support for Dr Vissel’s work has been essential in enabling novel, robust research that would otherwise not have been possible.

“My brother and I am proud to honour the memory of our late parents by stepping up our level of support for the vital work of the Garvan Institute of Medical Research, and in particular that of Dr Vissel. We believe that Dr Vissel’s neurological research has a huge potential to improve health outcomes and quality of life for the elderly, the numbers of whom are of course rapidly growing due to breakthroughs in the treatment of other illnesses and diseases,” said Stanley Roth.

There are many millions of people affected by neurodegenerative diseases like Alzheimer’s but there are currently no effective treatments that can slow or halt them. The generous, long-standing support of the Roth Charitable Foundation allows Dr Vissel’s team to pursue alternative drug results long-term research that could change the way we understand these diseases.

Their ultimate goal, with this support, is to contribute to altered health outcomes for the many people worldwide who face the prospect of these devastating diseases.
The starving brain

In this article, Professor Herbert Herzog explains how specific neurons, as well as brain and gut hormones influence metabolic balance. More specifically, how, when deregulated, these hormones can contribute to the development of obesity or, the other extreme, anorexia nervosa.

For humans to maintain a constant and healthy weight, we need to correctly regulate our energy. This means regulating both our intake of energy – ie our food or calories, and our energy use. Maintaining a state of energy homeostasis (or balance), is a whole organism, multi-organ process. Whilst aspects we can control such as eating and our physical activity are involved; there are also cellular processes which are critical in overall energy balance and body composition. These include processes which control where and in which form energy is stored (called energy partitioning) and which energy stores will be used to retrieve energy. Energy can be stored and used from fat, muscle or bone.

Within the brain, a structure called the hypothalamus is the critical area for controlling appetite and the regulation of energy. Located in an area of the brain that has access to blood borne factors and hormones, it receives vital information about the acute, as well as chronic energy status and energy requirements of the body. This information is then integrated into a complex neuronal network within the brain to adjust behaviours (such as feeding or eating), as well as to coordinate the adaptations to energy demand of different organs in the body, and that of the brain itself.

The two major populations of neuronal cells that are responsible for the communication of this vital information are the Neuropeptide Y (NPY) – the ‘feeding and energy conserving hormones’ and the opposing proopiomelanocortin neurons. By using a variety of model neurons’ and the opposing proopiomelanocortin neurons that are replenished, NPY levels are reduced, as is the drive to eat.

Energy supply fluctuations on a daily basis. The short term fluctuations in food supply can be managed with relative ease by the body through this NPY pathway. However, when a period of energy oversupply continues over a longer period, such as with a long term increase in diet, somehow the normal regulatory processes that would reduce NPY levels are no longer fully functional. This can then result in a situation where NPY levels are chronically elevated and the brain wrongly believes it is in a starvation situation. This further drives the urge to eat and preserve energy stores in the form of fat, even when there is no need for it. Even worse, when obese people then try to diet, this starvation drives hunger and the drive to eat, as well as to reserve fat stores and use energy from other stores such as bone. When energy stores are replenished, NPY levels are reduced, as is the drive to eat.

The NPY system is involved in the regulation of food intake and energy homeostasis using a technique that allows us to eliminate every gene in the fruit fly. Following this neuronal knockout, we monitor these flies for food intake and group them into low and high food intake categories. Flies that show significant increase or decrease in food intake are then tested for neural regulation of whole body fat content, as well as alterations in energy expenditure. We are particularly interested in the genes that lead to flies being fat, despite eating less, and flies that are lean, despite eating more. These candidate genes are then compared to human genetic studies, and the most promising genes will then be assessed in detail in other models.

The combination of molecular genetic and physiological techniques has allowed for great progress in identifying metabolic hormones and establishing their relationship to key neuronal systems controlling appetite, safety and energy homeostasis. However, many questions regarding the regulation of food intake and energy homeostasis still remain unanswered. It is important to understand the process of how the brain networks integrate peripheral signals that communicate energy levels to brain pathways, regulating energy balance. The vast number of neuronal connections has made this a very difficult task. However, recent advances employing viral delivery systems in combination with sophisticated Designer Receptors Exclusively Activated by Designer Drugs’ technology, has opened up new possibilities to get detailed insights into these complex networks and the identification of novel targets. Garvan researchers hope to use this technology to identify targets that could be used as potential drug targets for conditions like obesity or anorexia.

Obesity is a modern epidemic

Evolution has provided us with these mechanisms to help us survive famine, and for most of human history, food oversupply was not an issue. So in evolutionary terms, it was unlikely that people were going to get very fat and mechanisms were only put in place to prevent us from losing weight.

Obesity is a modern epidemic, and the challenge will be to find ways of tricking the body into losing weight. That will mean somehow circumventing or manipulating this NPY circuit, probably with drugs.

Why do some people develop obesity, while others don’t?

One interesting question is, why do some individuals on a particular diet develop obesity, while others on the same diet and lifestyle do not? By identifying genes that contribute to this, we hope to provide important new insights into the regulation of energy balance and help to identify potential new targets for obesity treatment.

To achieve this, we are currently performing a systematic dissection of the neural genes involved in the regulation of appetite and energy homeostasis using a technique that allows us to eliminate every gene in the fruit fly. Following this neuronal knockout, we monitor these flies for food intake and group them into low and high food intake categories.

Fliers that show significant increase or decrease in food intake are then tested for neural regulation of whole body fat content, as well as alterations in energy expenditure.

We are particularly interested in the genes that lead to flies being fat, despite eating less, and flies that are lean, despite eating more. These candidate genes are then compared to human genetic studies, and the most promising genes will then be assessed in detail in other models.

Future research into eating disorders

The combination of molecular genetic and physiological techniques has allowed for great progress in identifying metabolic hormones and establishing their relationship to key neuronal systems controlling appetite, safety and energy homeostasis. However, many questions regarding the regulation of food intake and energy homeostasis still remain unanswered.

It is important to understand the process of how the brain networks integrate peripheral signals that communicate energy levels to brain pathways, regulating energy balance. The vast number of neuronal connections has made this a very difficult task. However, recent advances employing viral delivery systems in combination with sophisticated Designer Receptors Exclusively Activated by Designer Drugs’ technology, has opened up new possibilities to get detailed insights into these complex networks and the identification of novel targets.

Garvan researchers hope to use this technology to identify targets that could be used as potential drug targets for conditions like obesity or anorexia.
When I arrived back in Australia, the Garvan Institute, with its investment and ambition in genomics, was really the only place for me to work.

**What does your role at Garvan involve?**

My role at Garvan is to plan and develop educational programs for communities and professional clinicians, to refine and extend their practice, to work across all types of media. I coordinate events, develop resources and generally talk with a lot of people about DNA, genomes and health.

I am also involved in research collaborations that provide important insights for my practice, such as a NSV collaboration to understand clinicians’ educational needs in genomic medicine, and an Australian Research Council-funded national consortium that is exploring Australians’ expectations about personal genomes.

**What inspires you about your work?**

I’m particularly inspired by the close clinical relationships throughout Garvan. My previous roles have been one or more steps removed from the clinic. In Garvan, and particularly within the Kinghorn Centre for Clinical Genomics, I have the opportunity to work directly with clinicians who are using genomics to refine and extend their practice, while their clinical questions and data drive the next generation of research.

**What do you enjoy doing in your spare time?**

My spare time is spent exploring Sydney’s beautiful parks and beaches with my husband and two girls, aged 4 and 6. After years in London and New York, we realise how lucky we are to be able to spend time outdoors all year round. I’ve also completed my Master of Education and supported researchers in public-facing collaborations such as exhibitions, broadcast productions and alternate reality games.

**What is the current focus of your work?**

Genomics is currently in non-human studies of Type 2 diabetes. We’re hoping to take that into human work next year. My interest is in protecting against metabolic disease, brain disorders and certain cancers. Now, many people work on myokines all around the world. By far, the most important thing to me is my two daughters. I am also an absolute exercise junkie. I used to be a professional triathlete, and I still exercise every day. I also have a passion for good food and wine. I love cooking and eating…at home, my kitchen is my lab!

---

**Staff Profile: Bronwyn Terrill**

**What is the current focus of your work?**

Our work aims to translate basic science discoveries into new therapeutics for disease. Even though I’m head of the Diabetes and Metabolism division, my work is not just about diabetes and metabolism. Rather, it is about pathways that regulate disease per se.

One of those pathways is the activation of a specific species of Heat Shock Protein (HSP) called HSP72. HSPs are a family of proteins produced by cells in response to exposure to stressful conditions. About 10 years ago we discovered that activating HSP72 can prevent insulin resistance which is the pre-cursor for diabetes. That led to me forming a partnership with a bio-tech company called NGen, developing museum-style exhibitions and online educational resources about DNA and molecular biology of cancer. I then moved to Europe’s largest genome centre – the Wellcome Trust Sanger Institute in Cambridge, UK – to set up and maintain its Public Engagement program. There, I led a team who ran onsite and education programs, developed genomics-focused online resources, and supported researchers in public-facing collaborations such as exhibitions, broadcast productions and alternate reality games.

Myokines are small proteins and peptides that are produced and released by muscle cells in response to muscular contractions. Once released, myokines travel through the circulatory system to other organs, altering the biology of those organs, and can play a role in protecting against metabolic disease, brain disorders and certain cancers.

One of those pathways is the activation of a specific species of Heat Shock Protein (HSP) called HSP72. HSPs are a family of proteins produced by cells in response to exposure to stressful conditions. About 10 years ago we discovered that activating HSP72 can prevent insulin resistance which is the pre-cursor for diabetes. That led to me forming a partnership with a bio-tech company called NGen, developing museum-style exhibitions and online educational resources about DNA and molecular biology of cancer. I then moved to Europe’s largest genome centre – the Wellcome Trust Sanger Institute in Cambridge, UK – to set up and maintain its Public Engagement program. There, I led a team who ran onsite and education programs, developed genomics-focused online resources, and supported researchers in public-facing collaborations such as exhibitions, broadcast productions and alternate reality games.

---

**Staff Profile: Professor Mark Febbraio**

**What is the current focus of your work?**

Our work aims to translate basic science discoveries into new therapeutics for disease. Even though I’m head of the Diabetes and Metabolism division, my work is not just about diabetes and metabolism. Rather, it is about pathways that regulate disease per se.

One of those pathways is the activation of a specific species of Heat Shock Protein (HSP) called HSP72. HSPs are a family of proteins produced by cells in response to exposure to stressful conditions. About 10 years ago we discovered that activating HSP72 can prevent insulin resistance which is the pre-cursor for diabetes. That led to me forming a partnership with a bio-tech company called NGen, developing museum-style exhibitions and online educational resources about DNA and molecular biology of cancer. I then moved to Europe’s largest genome centre – the Wellcome Trust Sanger Institute in Cambridge, UK – to set up and maintain its Public Engagement program. There, I led a team who ran onsite and education programs, developed genomics-focused online resources, and supported researchers in public-facing collaborations such as exhibitions, broadcast productions and alternate reality games.

Myokines are small proteins and peptides that are produced and released by muscle cells in response to muscular contractions. Once released, myokines travel through the circulatory system to other organs, altering the biology of those organs, and can play a role in protecting against metabolic disease, brain disorders and certain cancers. Now, many people work on myokines all around the world. By far, the most important thing to me is my two daughters. I am also an absolute exercise junkie. I used to be a professional triathlete, and I still exercise every day. I also have a passion for good food and wine. I love cooking and eating…at home, my kitchen is my lab!

---

**Fashion Targets Breast Cancer is back**

Garvan is thrilled to announce that it has obtained the Australian licence for Fashion Targets Breast Cancer. Since its inception in 1994, this highly successful international campaign, supported by some of the world’s leading fashion brands and personalities, has run in 14 countries and raised more than US $50 million for breast cancer research and health services globally.

The 2015 Australian campaign will raise funds for Garvan’s breast cancer research. From 1 September, a limited edition fundraising t-shirt, designed by renowned New Zealand designer, Karen Walker, will go on sale through THE ICONIC, a leading online fashion retailer.

Mr Andrew Giles, CEO of the Garvan Research Foundation says Fashion Targets Breast Cancer is an exciting opportunity. “At Garvan, we are always looking for ways to engage and inform people of all ages. Fashion Targets Breast Cancer is a unique and exciting opportunity for Garvan to broaden its reach in the community, while raising vital funds for the promising breast cancer research being carried out every day in Garvan’s labs. We are thrilled to have this opportunity, and I encourage everyone to consider purchasing a limited edition, designer t-shirt in support of Garvan’s important work.”

---

**Black tie events support Garvan’s research**

Garvan supporters have had two chances to don their best dress or suit recently.

The annual Garvan Gala was a huge success, raising important funds for Garvan’s Breakthrough Fund – helping Garvan to recruit some of the world’s best scientists.

Held on Saturday, 2 May at the Sofitel Sydney Wentworth, guests enjoyed a menu designed by chefs Neil Perry AM and Guillaume Brahimi. The MC was ABC News Breakfast presenter, Ms Virginia Trioli who kept guests entertained, as did performer Anja Nissan (winner of The Voice 2014).

The Young Garvan All Ribbons Ball was also held at the Sofitel Sydney Wentworth on Saturday, 18 July. This annual five star, black tie fundraising ball featured live and silent auctions, a spectacular array of auction items donated by the hotly-contested ‘money-can’t-buy’ auction items. The Garvan Research Foundation and 2015 Tulip Time Black tie events support Garvan’s research

---

**Tee off at Tulip Time**

Join us for a round of golf and raise vital funds for medical research on Friday 18 September at Mount Broughton Golf and Country Club, Sutton Forest (129km south-west of Sydney).

The Garvan Research Foundation and 2015 Tulip Time Festival are joining forces to raise funds and support the breakthrough medical research of the Garvan Institute of Medical Research.

By playing a round of golf, you’ll help Garvan to pioneer research into major diseases affecting our community today.

*For more information, or to register for the Golf Day, call Leigh Metham on (02) 9295 8115, or email Lmetham@garvan.org.au*

**Join us for a tour**

Throughout the Tulip Time Festival, Garvan is offering the opportunity to tour the Australian BioResources (ABR) facility in Moss Vale, an important mouse-based research facility for medical research and universities throughout Australia.

Tours will be held on Thursday 17, Friday 18, Thursday 24 and Friday 25 September at 10.30am. To book your place on one of the tours, visit www.giving.garvan.org.au/register-now or phone (02) 9295 8115. Spaces are limited, so book now to avoid disappointment.
In Memoriam February to June 2015.
Donations have been made in memory of:

David Abbott
Gordon Adamson
Gwen Allwright
Val Anderson
Angela Augustis
Jan Ballard
Gerry Barretto
Bruce Batterham
Wayne Bell
David Blenkinsop
Gregory J Bounds
Robert J Brewer
Valda Britton
Elisabeth Brooks
Helin H Buchanan
James Buchanan
Ian Buck
Valerie Burt
Pat Burt
Clare Carter
Robin Carter
Maria R Cesare
Jordan Cheney
Robert J Cole
Lucy Coleman
Lance Collins
Giovanni Corrente
Robert C Courey
Suann Croker
Leonie Cunningham
Arthur W Davids
Jaye A Davie
Janelle K Davis
Julie Deane
Dennis DeliElaBaie
Ryan Densby
Lawrie Devitt
Glenda Dollin
Sally Donovan
Sue Dowlan
Bridget L Dunn
Tony Edwardson
Wendy Egan
Walter B Eggelton
John Elliott
Phil Errington
Betty Evans
Lindan Fairbairn
Jeffery G Fairbrother
Wayne Fatone
Frank Favetta
Allan Ferris
Mavis Frewkes
Shirley F Fisher
Nick Forster
Peter John Fretwell
Susan Gamble
Judith Gleeson-White
Stewart J Graham
Susan Hannah
Emmanuel G Harris
Anthony J Herlihy
John N Hester
Thomas H Hill
Carolina Hoecher
Pizarro
Evelyn Horak
Pat Hordern
Rochelle Houblurn
Dianne J Howie
Ash Huggett
Lyla Hyde
Phillip Jackson
Robert Jackson
Leslie Jacobi
Annette Jedovnicky
Dennis Jeffers
Evi Joannou
June Karanges
Leanne Keen
Kellie Keir
Murray Keir
Janette Florence Kelly
Meryd Kelly
Andrew Kendall
Margaret Kennett
Margaret Kent
Gordon T Kliner
Chong Yoon Kim
Maggie King
Beryl Kirkwood
Glen S Kowalk
Geoffrey Lane
Janet Lane
Margaret Lawton
Frank Lee
Daryl L Levy
Guy Lewis
Albert Ashley
Pywell Lightfoot
Julia M Lirnard
Tim & Andrew Lynch
Maureen Madden
Peter Malen
Rich Maslen
Antonio Mastroian
Janet McKie
Frances McNamara
Carole Meades
Michael Meades
Katherine S Mignot
Francesco Mirigiani
Anthony Mole
Pamela M Moore
Alexander Morison
Pete's Mum
John Nelson
Gul Niazi
Jan Noonan
Emily H Norman
Adrian Notley
Simon Ohmsen
Graham J O'Neil
Elena Ordiz
Susan O'Reilly
Michael Parfit
John Patterson
Merle Pearce
Janine Pearson
Carol Perfrment
Clare Pfeiffer
Merrill Philip
Val Pilsowth
Heather Pittar
Terry Pratchett
Colleen Rabu
Pauline Elizabeth
Radley
Monty Ranawake
Hazel Rennel
Robert J Rice
Tracy Richey
Marie P Robbins
Erica Ruck
Margaret Ryan
Martin Samociuk
Richard Sayers
Herman Scholte
John Serafin
Walter Sheldon
Jose Simoes
Jennifer Simpson
Raymond Sly
Rita Sly
William Smith
Mel Smith's Mother
Ron Soo
Bozena Stewart
Blagoja Stojcjevski
Rhonda Stone
Henri Sueke
Ray Sykes
Wendi Thompson
Jan Thomsom
Jack & Stella Tucker
Wendy Turner
Jan Uren
Rinda Viehmann
Verroust
Sandi & Jean Vine
John Walker
Cheryl Warfield
Jim Warren
Brian H Watson
Nick Wilson
Richard Wingate
Craig Winslade
Donald Woodburn
John Wright
Joanna Youie
Anthony C Young
George Zisopoulos
Danuta Zmijowicz
Anne M Zoppo

BE PART OF PROGRESS

My Contact Details

Title
Surname
Address
Suburb State Postcode
Daytime Phone
Email
Garvan Supporter Number (if known)

Please Send Me Further Information About:
☐ Giving to Garvan in my will (strictly confidential)
☐ Volunteering with Garvan
☐ Giving regularly to Garvan through my bank account

Please Change My Communications:
☐ I no longer wish to receive this Garvan breaksthrough newsletter
☐ I only wish to receive Garvan breaksthrough by email
☐ I only wish to receive appeal mailings in May/June
☐ I do not wish to receive any appeal mailings

My Gift Details

Please use this coupon if you would like to make a donation to Garvan's breakthrough medical research, or if you would like more information. We would love to hear from you.

Yes! I want to help Garvan make progress with a gift of $[Gift of choice $]
☐ Gift of choice

☐ My cheque/money order made payable to Garvan Research Foundation is enclosed

☐ OR Please deduct the above amount once monthly annually from my ☐ Visa ☐ MasterCard ☐ Amex ☐ Diners

Card Number ____________________________

Expiration Date __/____ 20____

Cardholder's Name ____________________________

Signature ____________________________

Donations of $2 and above are tax deductible.

Please complete this coupon and mail it to:

Garvan Research Foundation
Reply Paid 68593, Darlinghurst NSW 2010

Call: 1300 73 66 77 (9am to 5pm)

Fax: (02) 9295 8507

Online: www.garvan.org.au/support

Coming Up

1 September Fashion Targets Breast Cancer
t-shirts on sale

18 September Tulip Time Golf Day

Clinical Studies

Ovarian Cancer Study

We are looking for volunteers with NO personal history of cancer to donate approximately 50-80 mL of blood to be used to optimise experimental protocols and/or biobanked for future use in cancer vs controls comparisons. This work is part of a project aimed at developing a blood-based test for early ovarian cancer. To volunteer, or for more information, contact Dr Kristina Warton 0438 649 073 or email k.warton@garvan.org.au (St Vincent's HREC Ref SVH14/257).

Brown fat and blood pressure study

Brown fat is a special kind of fat which burns fat in the body. We are looking for volunteers who have high blood pressure to participate in a trial investigating the effect of a medication on brown fat. Participants must be aged 18 to 45 years and currently on one blood pressure medication. For further information please contact Dr Paul Lee (02) 9295 8416 or email p.lee@garvan.org.au (St Vincent's HREC Ref 14/SVH/105).

Impact of medication on ability to process a meal

Volunteers are needed for a study testing an approved medication on your body's ability to process a meal. We are looking for healthy men and women, aged 22-65 years. The study involves one short (1 hour) and two longer (4 hours each) morning visits to Garvan. Participants will be provided breakfast and reimbursed for travel. For further information, please call (02) 9295 8215 or email crf@garvan.org.au (St Vincent's HREC Ref 14/157 Version 1 Meal Study).