Fundamentals of Real-Time PCR

Poupak Farahani, Ph.D.
Senior Product Specialist
Polymerase Chain Reaction (PCR)

- Unamplified DNA
- Strand Denaturation
- Primer annealing
- Primer extension

Cycling:
Exponential amplification of PCR products

Denaturation
Annealing
Extension
Limitations of Traditional End-Point PCR

- Low sensitivity
- Poor precision
- Results are not expressed as numbers
- Ethidium bromide staining is not quantitative
- Post-PCR processing required
- Narrow dynamic range (<2 logs)
Alternative Quantitative Methods

- Northern Blots
- RNase protection assays
- In Situ hybridization
- Competitive PCR
- cDNA arrays
Problems Associated With These Alternative Methods

- Difficulty achieving high throughput
- Using large RNA/DNA quantities
- Limited dynamic range
- Threat of contamination
- Difficulty designing controls
- Difficulty creating and optimizing quantitative assays
Goals For Improvement of Quantitative PCR

- Eliminate use of gel electrophoresis
- Increase reproducibility
- Enable use of internal controls/standards
- Reduce turnaround time
- Increase throughput
- Reduce sample amount usage
Quantitative Real-Time PCR

Detection of PCR product growth throughout the amplification process

• No post-PCR processing required
• Collects data during high-precision exponential phase
3 Phases of PCR

Exponential:
- Exact doubling of product
- Reaction is very precise and specific

Linear:
- The reaction components are becoming limited
- The reaction efficiency is dropping

Plateau:
- The reaction has stopped
- No more products are being made
Large Dynamic Range

Amplification of serial dilutions of 18S rRNA target in 16 replicates

Standard curve showing 9 logs of linear dynamic range
Real-Time PCR Chemistries

SYBR® Green I dye

Binds double stranded DNA

Fluorogenic 5' Nuclease Assay

Uses a TaqMan® probe
Fluorogenic 5' Nuclease Assay

FRET = Fluorescence Resonance Energy Transfer
Fluorogenic 5' Nuclease Assay

Displacement during Polymerization

Forward Primer

Cleavage

Reverse Primer
TaqMan® MGB Probes

- Minor Groove Binder (MGB) enhances the melting temperature (T_m) of the probe resulting in shorter probes
 - shorter probes provide better discrimination

[R NFQ MGB] : Reporter Dye

NFQ : Non-Fluorescent Quencher

MGB : Minor Groove Binder (T_m Enhancer)
SYBR® Green I Dye Assay Chemistry

Denaturation

Polymerization

Polymerization Complete
Terminology

Baseline:
The initial cycles prior to any detectable amplification, in which there is little change in fluorescent signal.
Threshold:

Level at which fluorescence is detected in reactions during the exponential phase of PCR.
Cycle Threshold (C_T): The cycle (point in time) at which the PCR product crosses the threshold of detection.
R_n: Reporter signal divided by the passive reference ROX™ Dye signal. Normalized to account for pipetting variation.
\(\Delta R_n \): Normalized reporter signal minus background (baseline level).
Types of Quantitation Assays

Absolute quantitation
Provides absolute measurement of starting copy number
- Requires standards of known quantity
- e.g. Detecting DNA copy number for forensics purposes

Relative quantitation
Forensic Applications

Is there any (amplifiable) DNA?

How much is there?
From Fluorescence to Copy Number

C_T is directly proportional to log of amount of input template
High (100%) Amplification Efficiency

1 cycle = 2 fold expression difference
Types of Quantitation Assays

- Absolute quantitation
- Relative quantitation

Provides accurate discrimination between relative amounts of starting material:
- e.g. Comparing expression levels of wildtype vs. mutated alleles
- e.g. Comparing expression levels of a gene across different tissues or between different biological conditions
- e.g. Validating array results
Relative Quantitation

Calibrator = The sample used as the basis for comparative results
Relative Quantitation

Endogenous Control

= Target used to normalize for sample handling
(e.g. 18S rRNA, GAPDH, β-actin)

- **t =0**
 - total RNA
 - cDNA

- **t=12**
 - total RNA
 - cDNA

- **t=24**
 - total RNA
 - cDNA

- **t=48**
 - total RNA
 - cDNA
Comparative C_T Method

- **$t = 0$**
 - Endogenous control: $C_t=10$
 - Target gene: $C_t=24$

- **$t = 12$ h**
 - Endogenous control: $C_t=9$
 - Target gene: $C_t=25$

- **$t = 24$ h**
 - Endogenous control: $C_t=9$
 - Target gene: $C_t=24$

- **$t = 48$ h**
 - Endogenous control: $C_t=11$
 - Target gene: $C_t=23$

Legend:
- Red: Endogenous control
- Green: Target gene

© 2005 Applied Biosystems
Comparative C_T Method Calculation:

Normalized to endogenous control:

\[
C_T^{48hrs} - C_T^{Endo.\ Control} = \Delta C_T^{48hrs}
\]

\[
C_T^{0hrs, Calibrator} - C_T^{Endo.\ Control} = \Delta C_T^{0hrs}
\]

Normalized to calibrator sample:

\[
\Delta C_T^{48hrs} - \Delta C_T^{0hrs, Calibrator} = \Delta \Delta C_T
\]

Relative fold change:

\[
2^{(-\Delta \Delta C_T)} = 2^{2} = 4
\]

There is a 4-fold overexpression of my gene at $T=48h$ compared $T=0h...48hrs$ after drug treatment!
Applications

♦ Real-Time Detection
 – Absolute Quantitation
 – Relative Quantitation

♦ End Point Detection
 – Allelic Discrimination (SNP)
 – +/- Assay (IPC)
 • Pathogen Detection
Allelic Discrimination (SNP)

♦ Determines the genotype of samples
 • Possible to differentiate a single nucleotide polymorphism (SNP)
Allelic Discrimination Assay

Allele C - only VIC^R dye signal is generated

Allele T - only FAM™ dye signal is generated
Allelic Discrimination (SNP)

<table>
<thead>
<tr>
<th>Allele X</th>
<th>Allele Y</th>
<th>Positive Ref</th>
<th>Task</th>
<th>Call</th>
<th>Quality Value</th>
<th>Call Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>Yes</td>
<td>AL-1</td>
<td>99.89</td>
<td>Automatic</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>Yes</td>
<td>AL-1</td>
<td>99.99</td>
<td>Automatic</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>Yes</td>
<td>AL-1</td>
<td>99.88</td>
<td>Automatic</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>Yes</td>
<td>AL-1</td>
<td>99.98</td>
<td>Automatic</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>Yes</td>
<td>AL-1</td>
<td>99.98</td>
<td>Automatic</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>Yes</td>
<td>AL-1</td>
<td>99.98</td>
<td>Automatic</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>Yes</td>
<td>AL-1</td>
<td>99.98</td>
<td>Automatic</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>Yes</td>
<td>AL-1</td>
<td>99.98</td>
<td>Automatic</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>Yes</td>
<td>AL-1</td>
<td>99.98</td>
<td>Automatic</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>Yes</td>
<td>AL-1</td>
<td>99.98</td>
<td>Automatic</td>
<td></td>
</tr>
</tbody>
</table>

Allelic Discrimination Plot

- **Legend:**
 - Undetermined
 - Allele X
 - Allele Y
 - Allele X&Y
 - Undetermined
 - NTC

Setup

- Marker: C_2484870_10
- Col: Undeter

Results

- **Allelic Disc Plot:**
 - TT
 - CT
 - CC

© 2005 Applied Biosystems
Applications

♦ Real Time Detection
 – Absolute Quantitation
 – Relative Quantitation

♦ End Point Detection
 – Allele Detection (SNP)
 – +/- Assay (IPC)
 • Pathogen Detection
Internal Positive Control (IPC)

♦ Distinguish true target negative from PCR inhibition

♦ Co-amplified with target DNA without compromising amplification of the target sequence
Plus/Minus assay with IPC

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>N</td>
<td>N</td>
<td>U (+)</td>
<td>U (+)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>U (+)</td>
<td>U (+)</td>
<td>U (+)</td>
<td>U (+)</td>
</tr>
<tr>
<td>B</td>
<td>N</td>
<td>N</td>
<td>U (+)</td>
<td>U (+)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>U (+)</td>
<td>U (+)</td>
<td>U (+)</td>
<td>U (+)</td>
</tr>
<tr>
<td>C</td>
<td>N</td>
<td>N</td>
<td>U (+)</td>
<td>U (+)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>U (+)</td>
<td>U (+)</td>
<td>U (+)</td>
<td>U (+)</td>
</tr>
<tr>
<td>D</td>
<td>N</td>
<td>N</td>
<td>U (+)</td>
<td>U (+)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>U (+)</td>
<td>U (+)</td>
<td>U (+)</td>
<td>U (+)</td>
</tr>
<tr>
<td>E</td>
<td>N</td>
<td>N</td>
<td>U (+)</td>
<td>U (+)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>U (+)</td>
<td>U (+)</td>
<td>U (+)</td>
<td>U (+)</td>
</tr>
<tr>
<td>F</td>
<td>N</td>
<td>N</td>
<td>U (+)</td>
<td>U (+)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>U (+)</td>
<td>U (+)</td>
<td>U (+)</td>
<td>U (+)</td>
</tr>
<tr>
<td>G</td>
<td>N</td>
<td>N</td>
<td>U (+)</td>
<td>U (+)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>U (+)</td>
<td>U (+)</td>
<td>U (+)</td>
<td>U (+)</td>
</tr>
<tr>
<td>H</td>
<td>N</td>
<td>N</td>
<td>U (+)</td>
<td>U (+)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>U (+)</td>
<td>U (+)</td>
<td>U (+)</td>
<td>U (+)</td>
</tr>
</tbody>
</table>

Disconnected Colors:
- **Red Circle:** Indicates a non-specific reaction.
- **Green Circle:** Indicates a specific reaction.
Important Considerations

- Reagents
- Chemistry
- Assay
- Instrument
- Software
RNA to Amplified cDNA: 1-Step vs. 2-Step

1-STEP
- Closed tube (no contamination)
- Easy-to-use

2-STEP
- Archive-ready sample
Formats: Master Mix vs. Core Reagent

Core reagents allow flexibility and optimization

- **AmpliTaq Gold® DNA Polymerase**
- **AmpErase® UNG**
- **10X Buffer**
- **dNTPs**
- **MgCl₂**

Master mixes are easy-to-use and convenient

All components in one tube!
Advantage of Using a ROX™ Dye Normalizer

Improves precision

Compensates for small fluorescent fluctuations that can occur from well-to-well

Reporter / Reference
Precision with ROX™ Dye

As the concentration of passive reference decreases, the st. dev. increases; thus decreasing precision.

With only 20% of the Passive Reference Dye I, amplification becomes noisy with broad CT spread.

At 100% of the Passive Reference Dye I, CT replicates are tight and precise.
Not all ROX Dyes are Rock Solid!

Side-by-side comparison of four Master Mixes with comparable Passive Reference Dye I concentration

Applied Biosystems TaqMan® Universal PCR Master Mix produces the lowest standard deviation, therefore the most precise results!
Reaction Setup

TaqMan® Kit

- High specificity
- Multiplexing capability
- End-point assay detection
- Rare transcript and low level pathogen detection

SYBR® Green Kit

- Economical
- TaqMan® probe sensitivity not required
- Pre-screening targets
Dissociation Curve Analysis
- Displays melting temperature of the product generated in SYBR® Green assays
Gold Standard: AB Real-Time PCR reagent line

- TaqMan® Master Mix
 - Universal Master Mix
 - Fast TaqMan Master Mix
 - Improves time to result from 2 hours to about 35 minutes
- Power SYBR® Green Master Mix
 - Provide high sensitivity with less than 10 copies
 - High quality manufacturing ensure consistent lot-to-lot performance
- RT-Master Mix and core reagent
 - One-step or two-step RT reactions

Coming soon
- Reduced assay optimization time
- Reduced experimental validation

- Reduced running time
- Reduced dependency on accurate pipetting
- More extensive validation required
Your Choice of Assays

• **TaqMan® Gene Expression Assays**
 - An extensive list of pre-designed and qualified TaqMan® probes and primers ready for order
 - Inventoried (off-the-shelf)
 >40,000 gene expression assays for human, mouse, and rat
 - Non-inventoried (made-to-order)
 - >600,000 assays for human, mouse, rat, arabidopsis, and drosophila
 - Bioinformatics and information content
 - www.allgenes.com

• **Custom TaqMan® Gene Expression Assays**
 - Submit your sequence and Applied Biosystems will design and synthesize your assay
 - Custom made, single tube, ready-to-use
 - Same format as inventoried TaqMan Gene Expression Assays
 - For all species

• **Support for user designed assays**
 - Rapid Assay Development Guidelines
Rapid Assay Development Guidelines

• Primer and probe design using Primer Express® software
• The use of TaqMan® Universal PCR Master Mix or SYBR® Green PCR Master Mix
• Universal thermal cycling parameters
• Default primer and probe concentrations eliminate assay optimization
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Block format</td>
<td>96-well, 384-well, Fast 96-well, TaqMan® Low Density Array</td>
<td>Fast 96-well</td>
<td>96-well</td>
<td>96-well</td>
</tr>
<tr>
<td>Automation compatibility</td>
<td>Custom Zymark® twister robot</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Bar code plate tracking</td>
<td>Hand-held and fixed mount bar code reader</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Reaction volume</td>
<td>Variable, depending on block format</td>
<td>10-30 µL</td>
<td>25–100µL</td>
<td></td>
</tr>
<tr>
<td>Excitation source</td>
<td>488 nm argon laser</td>
<td>Tungsten Halogen Lamp 5 Excitation Filters</td>
<td>Tungsten Halogen Lamp 1 Excitation Filter</td>
<td></td>
</tr>
<tr>
<td>Detection</td>
<td>Spectrograph</td>
<td>5 Emission Filters</td>
<td>4 Emission Filters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Continuous 500–660 nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Footprint size</td>
<td>924 sq. inch</td>
<td></td>
<td>237 sq. inch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,617 sq. inch (with automation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation specification</td>
<td></td>
<td></td>
<td>2-fold discrimination with 99.7% confidence level</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Computer</td>
<td>Desktop</td>
<td>Laptop or Desktop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applications</td>
<td></td>
<td>Quantitation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allelic Discrimination</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plus/Minus Detection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real-Time throughput</td>
<td>Up to 5,000 wells per day (unattended operation) with Automation Accessory</td>
<td>Over 1000 wells per 8 hour work day</td>
<td>Up to 480 wells per 8 hour work day</td>
<td></td>
</tr>
<tr>
<td>Thermal cycling system</td>
<td></td>
<td>Peltier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software</td>
<td>-Standard with RQ</td>
<td>-Standard with RQ</td>
<td>-Standard</td>
<td>-Standard</td>
</tr>
<tr>
<td></td>
<td>-Paid Options:</td>
<td></td>
<td>-Paid RQ option</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Enterprise</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-RQ Manager</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-SNP Manager</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Applied Biosystems 7900HT and 7500 Fast Real-Time PCR Systems

• Complete systems designed to run fast in a standard 96-well configuration

• Can perform absolute or relative quantitation assays in about 35 minutes

• Increase productivity by providing faster time to result

• Includes a complete Fast system: hardware, software, reagents and consumables

• Comparable data on both fast and standard
TaqMan® Low Density Array

– Convenient new consumable format
– Seamlessly integrates Applied Biosystems wide selection of assay products with the Applied Biosystems 7900HT Fast Real-Time PCR System

- Easy sample loading, 8 loading ports
 - No need for robotics
 - Standardization between experiments and labs

- 8 channels each with 48 reaction chambers
- 384 reaction chambers
What is Multicomponent?
- Contribution of individual dye component is displayed throughout the PCR cycle
Software Highlights

• Gene Expression
 • Fully automated data analysis (baseline and threshold for all assays)
 • Automated calculation of relative quantitation
 • Data from up to 10 plates integrated into a single study
Gene Expression 2002
Real-time PCR and its bottlenecks

\[nM = ? \text{pmol} = ? \mu L \]
Gene Expression Today
Most bottlenecks of real-time PCR removed

TaqMan Gene Expression Assays
Custom TaqMan Gene Expression Assays
Online Ordering Catalog

Automated Gene Expression Analysis Software
Expectations in Gene Expression Studies

- Reproducibility ✓
- Accuracy ✓
- Flexibility (Scalability) ✓
- Standardization ✓
- High Throughput ✓
- Informative Data Sets ✓
- Convenience ✓
Complete Integrated Solution

• Complete line of REAGENTS and consumables
 +

• Your choice of ASSAYS
 +

• High-quality Real-time PCR INSTRUMENTS
 +

• Easy-to-use SOFTWARE for setup and complete data analysis
 =

Enabling scientific discovery!
Questions & Discussion…

Thank You!!!
Licensing and Trademarks

TaqMan Assays and SYBR Green Master Mix -
For Research Use Only. Not for use in diagnostic procedures.
The PCR process and 5' nuclease process are covered by patent owned by Roche Molecular Systems, Inc. and F. Hoffmann-La Roche Ltd, and by patents owned or licensed to Applera Corporation. Further information on purchasing licenses may be obtained from the Director of Licensing, Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404, USA.

TaqMan Low Density Array -
For Research Use Only. Not for use in diagnostic procedures.
This product is a Licensed Probe. Its use with an Authorized Core Kit and Authorized Thermal Cycler provides a license for the purchaser’s own internal research and development under the 5' nuclease patents and basic PCR patents of Roche Molecular Systems, Inc. and F. Hoffmann-La Roche Ltd. No real-time apparatus or system patent rights or any other patent rights owned by Applera Corporation, and no rights for any other application, including any in vitro diagnostic application under patents owned by Roche Molecular Systems, Inc. and F. Hoffmann-La Roche Ltd claiming homogeneous or real-time amplification and detection methods, are conveyed expressly, by implication or by estoppel.
Micro Fluidic Card developed in collaboration with 3M Company.

SYBR Green Master Mix -
The SYBR® Green dye is sold pursuant to a limited license from Molecular Probes, Inc.

7300/7500 and 7900HT Fast Instruments -
Practice of the patented polymerase chain reaction (PCR) and 5' nuclease processes requires licenses. The Applied Biosystems 7300/7500 Real-Time PCR System and the Applied Biosystems 7900HT Fast Real-Time PCR System base unit equipped with its sample block module are Authorized Thermal Cyclers for PCR and may be used with PCR licenses available from Applied Biosystems. Their use with Authorized Reagents also provides a limited PCR license in accordance with the label rights accompanying such reagents. It is licensed under U.S. Patent No. 6,814,934 and corresponding claims in its non-U.S. counterparts and under one or more of U.S. Patents Nos. 5,038,852, 5,656,493, 5,333,675, 5,475,610, or 6,703,236, or corresponding claims in their non-U.S. counterparts, for use in research and other applied fields. No rights are conveyed expressly, by implication or by estoppel under any other patent claims or for any other application.