Bone Therapeutics Lab

Selected Publications

Munoz, M.A., Fletcher, E.K., Skinner, O.P., Jurczyluk, J., Kristianto, E., Hodson, M.P., Sun, S., Ebetino, F.H., Croucher, D.R., Hansbro, P.M., Center, J.R. & Rogers, M.J. (2021). Bisphosphonates have actions in the lung and inhibit the mevalonate pathway in alveolar macrophages. eLife 10.7554/eLife.72430.

Munoz, M.A., Jurczyluk, J., Simon, A., Hissaria, P., Arts, R.J.W., Coman, D.J., Boros, C., Mehr, S.S. & Rogers, M.J. (2019). Defective protein prenylation in a spectrum of patients with mevalonate kinase deficiency. Frontiers in Immunology 10:1900. doi: 10.3389/fimmu.2019.01900.

Skinner, O.P., Jurczyluk, J., Baker, P.J., Masters, S.L., Rios Wilks, A., Clearwater, M.S., Robertson, A.A.B., Schroder, K., Mehr, S., *Munoz, M.A. & *Rogers, M.J. Lack of protein prenylation promotes NLRP3 inflammasome assembly in human monocytes. J Allergy Clin Immunol 2019; 143:2315-2317. doi: 10.1016/j.jaci.2019.02.013.

*Munoz, M.A., *Jurczyluk, J., Mehr, S., Chai, R.C., Arts, R.J.W., Sheu, A., McMahon, C., Center, J.R., Singh-Grewal, D., Chaitow, J., Campbell, D.E., Quinn, J.M.W., Alexandrov, K., Tnimov, Z., Tangye, S.G., Simon, A., Phan, T.G. & Rogers, M.J. Defective protein prenylation is a diagnostic biomarker of mevalonate kinase deficiency. J Allergy Clin Immunol 2017; 140:873-875. doi: 10.1016/j.jaci.2017.02.033.

*Jurczyluk, J., *Munoz, M., Skinner, O.P., Chai, R.C., Ali, N., Palendira, U., Quinn, J.M.W., Preston, A., Tangye, S.G., Brown, A.J., Argent, E., Ziegler, J.B., Mehr, S. & Rogers, M.J. Mevalonate kinase deficiency leads to decreased prenylation of Rab GTPases. Immunology & Cell Biology 2016; 94:994-999.

Lawson, M., McDonald, M., Kovacic, N., Khoo, W.H., Terry, R., Down, J., Kaplan, W., Paton-Hough, J., Fellows, C., Pettitt, J., Dear, T., Van Valckenborgh, E., Baldock, P., Rogers, M.J., Eaton, C., Vanderkerken, K., Pettit, A., Quinn, J., Zannettino, A., Phan, T.G. & Croucher, P.I. Osteoclasts Control Re-activation of Dormant Myeloma Cells by Remodeling the Endosteal Niche. Nature Communications 2015; 6:8983. doi: 10.1038/ncomms9983.

Ali, N., Jurczyluk, J., Shay, G., Tnimov, Z., Alexandrov, K., Munoz, M.A., Skinner, O.P., Pavlos, N.J. & Rogers, M.J. A highly sensitive prenylation assay reveals in vivo effects of bisphosphonate drug on the Rab prenylome of macrophages outside the skeleton. Small GTPases 2015; 6:202-211.

Junankar, S., Shay, G., Jurczyluk, J., Ali, N., Down, J., Pocock, N., Parker, A., Nguyen, A., Sun, S., Kashemirov, B., McKenna, C.E., Croucher, P.I., Swarbrick, A., Weilbaecher, K. Phan, T.G. & Rogers, M.J. Real-time intravital imaging establishes tumour-associated macrophages as the extraskeletal target of bisphosphonate action in cancer. Cancer Discovery 2015; 5:35-42.

Croucher, P.I., Parker, B.S., Corcoran, N. & Rogers, M.J. Bone turnover markers and prostate cancer: not just a measure of bone disease? Eur. Urol. 2015; 68:51-52

Das, S., Edwards, P.A. Crockett, J.C. & Rogers, M.J. Upregulation of endogenous farnesyl diphosphate synthase overcomes the inhibitory effect of bisphosphonate on protein prenylation in HeLa cells. Biochim. Biophys. Acta 2014; 1841:569-73

Rumpler, M., Würger, T., Roschger, P., Zwettler, E., Sturmlechner, I., Altmann, P., Fratzl, P., Rogers, M.J., Klaushofer, K. Osteoclasts on Bone and Dentin In Vitro: Mechanism of Trail Formation and Comparison of Resorption Behavior. Calcif Tiss Int 2013; 93:526-39

Naylor AJ, Azzam E, Smith S, Croft A, Poyser C, Duffield JS, Huso DL, Gay S, Ospelt C, Cooper MS, Isacke C, Goodyear S, Rogers MJ & Buckley CD. The MSC marker CD248 (Endosialin) is a negative regulator of bone formation. Arth Rheum 2012; 64:3334-43.

Su, X., Floyd, D.H., Hughes, D., Xiang, J., Schneider, J.G., Uluckan, O., Heller, E., Deng, H., Zou, W., Craft, C.S., Wu, K., Hirbe, A.C., Grabowska, D., Eagleton, M.C., Townsley, S., Collins, L., Piwmica-Worms, D., Steinberg, T.H., Novack, D.V., Conley, P.B., Hurchla, M.A., Rogers, M. & Weilbaecher, K.N. The ADP receptor P2RY12 regulates osteoclast function and pathologic bone remodelling. J. Clin. Invest. 2012; 122:3579-3592

Moriceau, G., Roelofs, A., Brion, R., Redini, F., Ebetino, F.H., Rogers, M.J. & Heymann D. Synergistic inhibitory effect of apomine and lovastatin on osteosarcoma cell growth. Cancer 2012; 118:750-760

Whyte LS, Ford L, Ridge SA, Cameron GA, Rogers MJ & Ross RA. Cannabinoids and bone: endocannabinoids modulate human osteoclast function in vitro. Br J Pharmacol. 2012; 165:2584-2597

Hughes, A., Kleine-Albers, J., Helfrich, M.H., Ralston, S.H. & Rogers, M.J. A Class III Semaphorin (Sema3e) Inhibits Mouse Osteoblast Migration and Decreases Osteoclast Formation In Vitro. Calcif Tissue Int. 2012; 90:151-162

Roelofs, A.J., Stewart, C.A., Sun, S., Blazewska, K.M., Kashemirov, B.A., McKenna, C.E., Russell, R.G.G., Rogers, M.J., Lundy, M.W., Ebetino, F.H. & Coxon, F.P. Influence of bone affinity on the skeletal distribution of fluorescently-labeled bisphosphonates in vivo. J Bone Miner Res. 2012; 27:835-847.

Crockett, J.C., Mellis, D.J., Shennan, K.I.J., Duthie, A., Greenhorn, J., Wilkinson, D.I., Ralston, S.H., Helfrich, M.H. & Rogers, M.J. Signal peptide mutations in RANK prevent downstream activation of NK-kappa beta. J. Bone Miner. Res. 2011; 26:1926-1938.

Rogers, M.J., Crockett, J.C., Coxon, F.P., Monkkonen, J. Biochemical and molecular mechanisms of action of bisphosphonates. Bone 2011; 49(S1):34-41.

Itzstein C, Coxon FP, Rogers MJ. The regulation of osteoclast function and bone resorption by small GTPases. Small GTPases 2011; 2:117-130.

Taylor, A., Mules, E.H., Seabra, M., Rogers, M.J. & Coxon, F.P. Impaired prenylation of Rab GTPases in the gunmetalmouse causes defects in bone cell function. Small GTPases 2011; 2:131-142.

Coxon, F.P., Taylor, A., Stewart, C.A., Baron, R., Seabra, M, Ebetino, F.H. & Rogers, M.J. The gunmetal mouse reveals Rab geranylgeranyl transferase to be the major molecular target of phosphonocarboxylate analogues of bisphosphonates. Bone 2011; 49(S1):111-121.

Hocking, L.J., Mellis, D.J., McCabe, P.S., Helfrich, M.H. & Rogers, M.J. Functional interaction between Sequestosome-1/p62 and Autophagy-Linked FYVE-containing protein WDFY3 in human osteoclasts. Biochem Biophys Res Commun 2010; 402:543-548.

Roelofs, A.J., Coxon, F.P.; Ebetino, F.H., Lundy, M.W., Henneman, Z.J., Nancollas, G.H., Sun, S., Blazewska, K.M., Bala, J.L.F., Kashemirov, B.A., Khalid, A.B., McKenna, C.E. & Rogers, M.J. Fluorescent risedronate analogs reveal bisphosphonate uptake by bone marrow monocytes and localization around osteocytes in vivo. J Bone Miner Res 2010; 25:606-616.

Russell, R.G.G., Watts, N.B., Ebetino, F.H., Rogers, M.J. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy.Osteoporos Int. 2008; 19:733-759.

Guenther, A., Gordon, S., Tiemann, M., Bakker, F., Baum, W., Burger, R., Green, J.R., Roelofs, A.J., Rogers, M.J. & Gramatzki, M. Zoledronic acid inhibits protein prenylation in non-skeletal tumours in vivo and enhances survival in the INA-6 plasmacytoma model. Int. J. Cancer 2010; 126:239-246.

Whyte, L.S., Ryberg, E., Sims, N.A., Ridge, S., Mackie, K., Greasley P.J., Ross, R.A. & Rogers, M.J. The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proc Natl Acad Sci USA 2009; 106:16511-16516.

Sutherland, K.A., Rogers, H.L., Tosh, D. & Rogers, M.J. RANKL increases the level of Mcl-1 in osteoclasts and reduces bisphosphonate-induced osteoclast apoptosis in vitro. Arthritis Research & Therapy 2009; 11(2):R58.

Hirbe, A.C., Roelofs, A.J., Deng, H., Becker, S.N., Apicelli, A.I., Xu, Z., Prior, J.L., Piwnica-Worms, D., Rogers, M.J. & Weilbaecher, K. The bisphosphonate zoledronic acid decreases tumor growth in bone in mice with defective osteoclasts. Bone 2009; 44: 908-916.

Coxon, F.P., Thompson, K., Roelofs, A.J., Ebetino, F.H. & Rogers, M.J. Visualizing mineral binding and uptake of bisphosphonate by osteoclasts and non-resorbing cells. Bone 2008; 42:848-860.

Sobacchi, C., Frattini, A., Guerrini, M.M., Abinun, M., Pangrazio, A., Susani, L., Bredius, R., Mancini, G., Cant, A., Bishop, N., Grabowski, P., Del Fattore, A., Messina, C., Errigo, G., Coxon, F.P., Scott, D.I., Teti, A., Rogers, M.J., Vezzoni, P., Villa, A. & Helfrich, M.H. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nature Genetics 2007; 39:960-962.

Crockett, J.C., Schuetze, N., Tosh, D., Jatzke, S., Duthie, A., Jakob, F. & Rogers, M.J. The matricellular protein CYR61 inhibits osteoclastogenesis by a mechanism independent ofavb3 and avb5. Endocrinology 2007; 148:5761-5768.

Kavanagh, K.L., Guo, K., Dunford, J.E., Wu, X., Knapp, S., Ebetino, F.H., Rogers, M.J., Russell, R.G.G. & Oppermann, U.  The molecular mechanism of nitrogen-containing bisphosphonates as anti-osteoporosis drugs: crystal structure and inhibition of farnesyl pyrophosphate synthase. Proc. Natl. Acad. Sci USA 2006; 103:7829-7834.

Thompson, K., Rojas, J. & Rogers, M.J. Alkylamines cause Vg9Vd2-T cell activation and proliferation by inhibiting the mevalonate pathway. Blood 2006; 107:651-654.

Coxon, F.P., Ebetino, F.H., Mules, E.H., Seabra, M.C., McKenna, C. & Rogers, M.J. Phosphonocarboxylate inhibitors of Rab geranylgeranyl transferase disrupt the prenylation and membrane localization of Rab proteins in osteoclasts in vitroand in vivo. Bone 2005; 37:349-358.

Thompson, K. & Rogers, M.J. Statins prevent bisphosphonate-induced g,d-T cell proliferation and activation in vitro. J. Bone Miner. Res. 2004; 19:278-288.

Frith, J.C. & Rogers, M.J. Antagonistic effects of different classes of bisphosphonates in osteoclasts and macrophages in vitro. J. Bone Miner. Res. 2003; 18:204-212.

Coxon, F.P., Helfrich, M.H., Larijani, B., Muzylak, M., Dunford, J.E., Marshall, D., McKinnon, A.D., Nesbitt, S.A., Horton, M.A., Seabra, M.C., Ebetino, F.H. & Rogers, M.J. Identification of a novel phosphonocarboxylate inhibitor of Rab geranylgeranyl transferase that specifically prevents Rab prenylation in osteoclasts and macrophages. J. Biol. Chem. 2001; 276:48213-48222.

Frith, J.C., Monkkonen, J., Auriola, S. & Rogers, M.J. The molecular mechanism of action of the antiresorptive and antiinflammatory drug clodronate: evidence for the formation in vivo of a metabolite that inhibits bone resorption and causes osteoclast and macrophage apoptosis. Arth. Rheum. 2001; 44:2201-2211.

Benford, H.L., McGowan, N.W.M., Helfrich, M.H., Nuttall, M. & Rogers, M.J. Visualization of bisphosphonate-induced caspase-3 activity in apoptotic osteoclasts in vitro. Bone 2001; 28:465-473.

 Dunford, J.E., Thompson, K., Coxon, F.P., Luckman, S.P., Hahn, F.P., Poulter, C.D., Ebetino, F.H. & Rogers, M.J. Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J Pharmacol Exp Ther 2001; 296:235-242.

More Garvan Publications