Publications Search

Search for publications by author
Search for publications by abstract keyword(s)

Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates


Exercise is essential in regulating energy metabolism and whole-body insulin sensitivity. To explore the exercise signaling network, we undertook a global analysis of protein phosphorylation in human skeletal muscle biopsies from untrained healthy males before and after a single high-intensity exercise bout, revealing 1,004 unique exercise-regulated phosphosites on 562 proteins. These included substrates of known exercise-regulated kinases (AMPK, PKA, CaMK, MAPK, mTOR), yet the majority of kinases and substrate phosphosites have not previously been implicated in exercise signaling. Given the importance of AMPK in exercise-regulated metabolism, we performed a targeted in vitro AMPK screen and employed machine learning to predict exercise-regulated AMPK substrates. We validated eight predicted AMPK substrates, including AKAP1, using targeted phosphoproteomics. Functional characterization revealed an undescribed role for AMPK-dependent phosphorylation of AKAP1 in mitochondrial respiration. These data expose the unexplored complexity of acute exercise signaling and provide insights into the role of AMPK in mitochondrial biochemistry.

Type Journal
ISBN 1932-7420 (Electronic) 1550-4131 (Linking)
Authors Hoffman, N. J. ; Parker, B. L. ; Chaudhuri, R. ; Fisher-Wellman, K. H. ; Kleinert, M. ; Humphrey, S. J. ; Yang, P. ; Holliday, M. ; Trefely, S. ; Fazakerley, D. J. ; Stockli, J. ; Burchfield, J. G. ; Jensen, T. E. ; Jothi, R. ; Kiens, B. ; Wojtaszewski, J. F. ; Richter, E. A. ; James, D. E.;
Responsible Garvan Author (missing name)
Publisher Name Cell Metabolism
Published Date 2015-01-01
Published Volume 22
Published Issue 5
Published Pages 922-35
Status Published in-print
URL link to publisher's version
OpenAccess link to author's accepted manuscript version