Publications

Publications Search

Search for publications by author
Search for publications by abstract keyword(s)

A rapid co-culture stamping device for studying intercellular communication

Abstract

Regulation of tissue development and repair depends on communication between neighbouring cells. Recent advances in cell micro-contact printing and microfluidics have facilitated the in-vitro study of homotypic and heterotypic cell-cell interaction. Nonetheless, these techniques are still complicated to perform and as a result, are seldom used by biologists. We report here development of a temporarily sealed microfluidic stamping device which utilizes a novel valve design for patterning two adherent cell lines with well-defined interlacing configurations to study cell-cell interactions. We demonstrate post-stamping cell viability of >95%, the stamping of multiple adherent cell types, and the ability to control the seeded cell density. We also show viability, proliferation and migration of cultured cells, enabling analysis of co-culture boundary conditions on cell fate. We also developed an in-vitro model of endothelial and cardiac stem cell interactions, which are thought to regulate coronary repair after myocardial injury. The stamp is fabricated using microfabrication techniques, is operated with a lab pipettor and uses very low reagent volumes of 20 mul with cell injection efficiency of >70%. This easy-to-use device provides a general strategy for micro-patterning of multiple cell types and will be important for studying cell-cell interactions in a multitude of applications.

Type Journal
ISBN 2045-2322 (Electronic) 2045-2322 (Linking)
Authors Hassanzadeh-Barforoushi, A.; Shemesh, J.; Farbehi, N.; Asadnia, M.; Yeoh, G. H.; Harvey, R. P.; Nordon, R. E.; Warkiani, M. E.;
Publisher Name Scientific Reports
Published Date 2016-01-01
Published Volume 6
Published Pages 35618
Status Published in-print
URL link to publisher's version http://www.ncbi.nlm.nih.gov/pubmed/27752145
OpenAccess link to author's accepted manuscript version https://publications.gimr.garvan.org.au/open-access/13855