Publication Search

Search for publications by

Evidence for selective coupling of alpha 1-adrenergic receptors to phospholipase C-beta 1 in rat neonatal cardiomyocytes


Activation of phospholipase C (PLC) in neonatal rat cardiomyocytes (NCM) generates primarily inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) in response to rises in intracellular Ca(2+), or inositol 1,4-bisphosphate (Ins(1,4)P(2)) in response to norepinephrine (NE) (Matkovich, S. J. and Woodcock, E. A. (2000) J. Biol. Chem. 275, 10845-10850). To examine the PLC subtype mediating the alpha(1)-adrenergic receptor response, PLC-beta(1) and PLC-beta(3) were overexpressed in NCM using adenoviral infection (Ad-PLC-beta(1) NCM and Ad-PLC-beta(3) NCM, respectively) and PLC responses assessed from [(3)H]inositol phosphate (InsP) generation in the presence of 10 mm LiCl. The [(3)H]InsP response to NE (100 microm) was enhanced in Ad-PLC-beta(1) NCM relative to cells infected with blank virus (Ad-MX NCM), but was reduced in Ad-PLC-beta(3) NCM. In contrast, the [(3)H]InsP response to ATP (100 microm) was not elevated in Ad-PLC-beta(1) NCM, and was enhanced rather than diminished in Ad-PLC-beta(3) NCM, showing that effects of the two PLC-beta isoforms were specific for particular receptor types. PLC-delta(1) overexpression selectively reduced NE-induced [(3)H]InsP responses, without affecting the ATP stimulation. The reduced NE response was associated with a selective loss of PLC-beta(1) expression in Ad-PLC-delta(1) NCM. alpha(1)-Adrenergic receptor activation caused phosphorylation of PLC-beta(1) but not PLC-beta(3), whereas stimulation by ATP induced phosphorylation of PLC-beta(3) but not PLC-beta(1.) Taken together, these studies provide evidence that NE-stimulated InsP generation in NCM is primarily mediated by PLC-beta(1), despite the presence of both PLC-beta(1) and PLC-beta(3) isoforms.

Type Journal
ISBN 0021-9258 (Print)
Authors Arthur, J. F.;Matkovich, S. J.;Mitchell, C. J.;Biden, T. J.;Woodcock, E. A. :
Publisher Name J BIOL CHEM
Published Date 2001-01-01 00:00:00
Published Volume 276
Published Issue 40
Published Pages 37341-6
Status Published In-print