Publications Search

Search for publications by author
Search for publications by abstract keyword(s)

Acute elevation of circulating fatty acids impairs downstream insulin signalling in rat skeletal muscle in vivo independent of effects on stress signalling


The aim of this study was to examine the effect of an acute, physiological increase in plasma free fatty acid (FFA) on initial signalling events in rat red quadriceps muscle (RQ). Male Wistar rats received a 7% glycerol (GLYC) or 7% Intralipid/heparin (LIP) infusion for 3 h, after which they were either killed or infused with insulin at a rate of 0.5 U/kg per h for 5 min, before RQ collection. Plasma FFAs were elevated to approximately 2 mM in the LIP rats only. Insulin-stimulated insulin receptor (IR) Tyr1162/Tyr1163 phosphorylation and IR substrate (IRS)-1 Tyr612 phosphorylation were increased at least twofold over basal in GLYC rats with insulin and this increase was not significantly impaired in the LIP rats. However, there was no insulin-stimulated protein kinase B (PKB) Ser473 or glycogen synthase kinase (GSK)-3beta Ser9 phosphorylation in the LIP rats, compared with at least a twofold increase over basal in GLYC rats for both proteins. c-Jun N-terminal kinase, inhibitor of kappa kinase beta and inhibitor of nuclear factor-kappaB phosphorylation and total protein expression, as well as Ser307-IRS-1 phosphorylation, were not altered by lipid infusion compared with GLYC infusion. These data indicate that acute, physiological elevation in FFA has a greater impact on insulin signalling downstream of IR and IRS-1, at the level of PKB and GSK-3beta, and that under these conditions stress signalling pathways are not significantly stimulated. Decreased PKB and GSK-3beta phosphorylation in RQ may therefore be primary determinants of the reduced insulin action observed in situations of acute FFA oversupply.

Type Journal
ISBN 1479-6805 (Electronic)
Authors Frangioudakis, G.;Cooney, G. J. :
Responsible Garvan Author (missing name)
Published Date 2008-01-01
Published Volume 197
Published Issue 2
Published Pages 277-85
Status Published in-print
URL link to publisher's version
OpenAccess link to author's accepted manuscript version