Publication Search

Search for publications by

Progestins both stimulate and inhibit breast cancer cell cycle progression while increasing expression of transforming growth factor alpha, epidermal growth factor receptor, c-fos, and c-myc genes


This study documents a biphasic change in the rate of cell cycle progression and proliferation of T-47D human breast cancer cells treated with synthetic progestins, consisting of an initial transient acceleration in transit through G1, followed by cell cycle arrest and growth inhibition. Both components of the response were mediated via the progesterone receptor. The data are consistent with a model in which the action of progestins is to accelerate cells already progressing through G1, which are then arrested early in G1 after completing a round of replication, as are cells initially in other phases of the cell cycle. Such acceleration implies that progestins act on genes or gene products which are rate limiting for cell cycle progression. Increased production of epidermal growth factor and transforming growth factor alpha, putative autocrine growth factors in breast cancer cells, does not appear to account for the initial response to progestins, since although the mRNA abundance for these growth factors is rapidly induced by progestins, cells treated with epidermal growth factor or transforming growth factor alpha did not enter S phase until 5 to 6 h later than those stimulated by progestin. The proto-oncogenes c-fos and c-myc were rapidly but transiently induced by progestin treatment, paralleling the well-known response of these genes to mitogenic signals in other cell types. The progestin antagonist RU 486 inhibited progestin regulation of both cell cycle progression and c-myc expression, suggesting that this proto-oncogene may participate in growth modulation by progestins.

Type Journal
ISBN 0270-7306 (Print)
Authors Musgrove, E. A.;Lee, C. S.;Sutherland, R. L. :
Publisher Name MOL CELL BIOL
Published Date 1991-01-01 00:00:00
Published Volume 11
Published Issue 10
Published Pages 5032-43
Status Published In-print